

Using Stressor-Response Relationships to Derive Numeric Nutrient Criteria

Goal: Discuss the technical approaches that will improve the accuracy and precision of the estimated relationship between stressor and response variables used to derive numeric nutrient criteria

Outline

- Background
- Common questions

What is a Stressor-Response Approach?

Background

- Relationship between total phosphorus and chlorophyll-a used to guide management of lakes (Dillon and Rigler, 1974).
- Stressor-response relationships described as an approach for deriving nutrient criteria for different waterbodies (EPA 2000).
- Guidance on the use of stressor-response for nutrient criteria derivation reviewed by EPA SAB (2010).
- Final guidance document on use of stressor-response released (2010).

Common Questions about the Stressor-Response Approach

- Does a strong stressor-response relationship prove that a cause-effect relationship exists?
- How much data do I need?
- What are the thresholds for the response?
- Why are my relationships noisy?

Common Questions about the Stressor-Response Approach

- Does a strong stressor-response relationship prove that a cause-effect relationship exists?
- How much data do I need?
- What are the thresholds for the response?
- Why are my relationships noisy?

Cause-Effect Relationships

Stressor-response relationships do not prove causality, but they don't need to.

- Causal relationships between increased nutrients and ecological effects have been established by observational and manipulative studies conducted in the field and the lab.
- Conceptual models represent the known relationships between human activities, changes in nutrient concentrations (nitrogen and phosphorus), biological responses, and support for designated uses.

Stressor-Response Relationships and the Conceptual Model

- A stressor-response relationship provides an empirical representation of a relationship shown in the conceptual model.
- The accuracy and precision of this representation depends on the details of the statistical analysis and the available data.

Common Questions About the Stressor-Response Approach

- Does a strong stressor-response relationship prove that a cause-effect relationship exists?
- How much data do I need?
- What are the thresholds for the response?
- Why are my relationships noisy?

Data Requirements

- Data need to be nominally matched in time and space.
 - For example, nutrient measurements should be collected in the same stream reach as biological response data.
 - Matched data become harder to find as the number of other variables used in the model increases.
- Estimating a simple linear regression requires a minimum of 10 independent samples per degree of freedom (e.g., 10 samples per estimated coefficient).
 - Example: chlorophyll-a = $b_0 + b_1 \times TP$.
 - Two coefficients (b_0 and b_1) requires a minimum of 20 samples.
 - More data is always better.

Data Requirements (cont.)

- More data are required as covariates are considered.
 - Example: chlorophyll-a = $b_0 + b_1 \times TP + b_2 \times Canopy + b_3 \times Substrate$.
 - Four coefficients requires a minimum of 40 samples.
- Modelling relationships as curves requires more data.

Common Questions about the Stressor-Response Approach

- Does a strong stressor-response relationship prove that a cause-effect relationship exists?
- How much data do I need?
- What are the thresholds for the response?
- Why are my relationships noisy?

Thresholds for the Response

Thresholds for the Response

- Thresholds should link directly to an assessment endpoint.
 - Lake examples:
 - Excessive nutrients → higher microcystin → impaired drinking water
 - Excessive nutrients → lower dissolved oxygen → impaired aquatic life
 - Estuary example:
 - Excessive nutrients → increased turbidity → loss of SAV
- Thresholds for aquatic life uses can also be derived from reference conditions approaches.

Relationship Between Chlorophyll-a and Hypolimnetic Hypoxia

In lakes that stratify seasonally, chlorophyll-a in the epilimnion is strongly associated with hypoxia in the hypolimnion.

Relationship Between Lake Chlorophyll-a Concentration and Microcystin Occurrence

Red circles = lakes with microcystin $\geq 1 \,\mu g/L$ (World Health Organization risk level). Contours = probability of exceeding microcystin $\geq 1 \,\mu g/L$.

Threshold Based on Extent of SAV

	SAV Depth Target	K _d Target
Estuary Segment	(m)	K _d Target (1/m)
0301	None	-
0302	2.7	0.6
0303	3.3	0.5

Threshold Based on Extent of SAV

Water clarity provides a threshold from which we estimate a chlorophyll-a criterion.

Common Questions About the Stressor-Response Approach

- Does a strong stressor-response relationship prove that a cause-effect relationship exists?
- How much data do I need?
- What are the thresholds for the response?
- Why are my relationships noisy?

Unexplained Variability in Stressor-Response Relationships

- Measurement error:
 - Nutrient measurements are highly variable, even during baseflow.
- What summary statistic of nutrients should we be calculating?
 - Annual average baseflow concentration?
 - Flow-weighted concentration?

Unexplained Variability in Stressor-Response Relationships

Other unmodeled factors:

Approaches for Addressing Variability in Relationships

- Classification
 - TREED models
- Hierarchical models

Classification Example: Lakes

United States Environmental Protection Agency

TREED Models

CART regression:

• Split data into groups with similar values of the response variable.

TREED regression:

 Split data into groups with similar relationships between specified variables (e.g., chl a, TN, and TP)

TREED Models

Preliminary classifications can be identified from the data that maximize the predictive accuracy of the stressor-response model.

TREED Models: Preliminary Results

Filled circles N:P > 28

Open circles N:P < 28

Contour lines = Chlorophyll a in $\mu g/L$

Classification Example: Streams

Hierarchical Models

- Instead of classifying, model relationships in each waterbody separately.
 - Fewer variables can confound relationships when models are fit within a single waterbody.
- Hierarchical models allow us to relate each waterbody-specific model to an overall trend.

When is a Stressor-Response Relationship "Good" Enough?

- Does the estimated relationship accurately represent the relationships shown in the conceptual model?
- Is the estimated relationship precise enough to usefully inform criteria derivation?

Accuracy: Are All Relevant Covariates Considered?

- To identify potential confounding variables, select variables along each "backdoor" path linking the stressor with the response variable.
- Color can directly influence light availability and primary productivity, and is influenced by the hydrogeology of the lake watershed.

Accuracy: Are All Relevant Covariates Considered?

How strongly are covariates correlated with the stressor variable?

	All data —	Within	Within classes	
		Average	Range	
log (conductivity)	0.36	0.14	0.06 - 0.23	
log (color)	0.26	0.15	0.01 - 0.35	

Correlation coefficients between TN and different covariates

Accuracy: Is the Estimated Relationship Consistent With Other Estimates?

- How similar are models computed within a waterbody and models computed across different waterbodies?
- How similar is the estimated model to other models documented in the literature?
- Does the inclusion of covariates in the model substantially alter the estimated stressor-response relationship?

Example: Comparing Within-Lake and Across-Lake Models

Precision: Is a Stressor-Response Model Precise Enough?

- Commonly reported regression statistics include:
 - $-R^2$: The proportion of variability explained by the model relative to a horizontal line.
 - p-value: The probability that observed data would occur if the slope were 0 (i.e., a horizontal line).
- ✓ Neither of these statistics directly answer our question.

Is the Model Precise Enough to Usefully Inform Decisions?

The criterion that protects the least sensitive lake (B) allows chl $a=50 \mu g/L$ in the most sensitive lake.

Presenting model precision in terms of the effects of a criterion on different classes of waterbodies can be most informative.

Lessons Learned

- Simple linear regression, combined with classification, provides a model that is easily interpreted and communicated.
- Classification is critical for maximizing precision and accuracy of estimated relationships.
- Further research will improve the accuracy and precision of estimated relationships. Some example questions:
 - How can we best quantify nutrient concentrations in streams?
 - How can we best measure primary productivity in streams?